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The purpose of this research is to see how surface roughness
affects the hydrodynamic stability of a supersonic laminar boundary
layer. This note summarizes work dome in the second (1982-1983) year
of the program.

The outcome of the first year of the program had been to
demonstrate the great resistance of the supersomnic flow to
destabilization and tripping by roughness, to choose a final roughness
capable of such destabilization and tripping, and to complete boundary
layer surveys on an axisymmetric body so roughened as a prerequisite
to the stability measurements. In the present period thg geometry was
changed to a planar (flat plate) one to correct de{fﬂciencies found in
the axisymmetric flow, which however uses the same roughness geometry
as before. The flowfield measurements on this model have been

completed, as have about 307 of the final stability measurements.
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Work in the 1982-1983 period consisted of (a) fabricating the
experimental models, (b) measuring the flowfield over the models, and
(c) making the initial stability measurements. The basic model
consists of a 22.4 x 7.9 cm. flat plate whose surface can change from
a smooth to a rough one by the use of suitable inserts. The rough
insert used had a periodic twvo-dimensional roughness consisting of
0.014" (0.0356 cm.) high ridges ("teeth") running perpendicular to the
flow vector. The Reynolds number based on this roughness height
exceeds the one considered adequate for de-stabilizing the boundary
layer, as was already discovered in the first year (1980-81) of the
research. In addition to the rough-surface insert, a smooth-surface
insert was also made for tare measurements.

A thorough flow-field study was completed for both the smooth and
the rough furfaces, with the aim of deducing the dependence of the
boundary layer profile shape, layer kinematic and momentum thicknesses
and momentum Reynolds number on the stagnation pressure and distance x
from the leading edge. The test conditions were supply pressures of
600, 475, and 350 mm. Hg., temperatures of 100° F. and 125° F. and a
fixed stream Mach number of 3, producing unit Reynolds numbers of
33,000, 46,000, and 58,000 em~!. The measurements consisted of
surface pressures, surface temperatures, and 65 pitot-tube profiles
from the leading edge to the transition zome (roughly 0 <x <15 cm.).

The results of the flowfield measurements, which are essential
for the study of the stability were:

1. Transition to turbulence, which begins at 9 x 12 cm. for the
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smooth wall (460<’Re6<’600), begine earlier for the rough wall

(8 ¢x <10 cm., 370<Re9<530), the variations quoted here denoting a

unit-Reynolds-number effect. (Figure 1)

2. The laminar boundary layer over the smooth wall is in very good

agreement with theoretical (Blasius) expectations. (Figure 2)

3. The flow over the rough-wall ridges is of the skimming type; i.e.

the cavities formed by the teeth are closed. (Figure 3)

4. The velocity profiles of the rough-wall boundary layer are
surprisingly similar to those over the smooth wall, a result
previously reported for randomly-rough walls at low speeds. The
differences are too small to reveal a systematic effect of the
roughness, although the latter generally tends to decelerate the flow

near the wall. (Figures 4 and 5)

The dual observation of transition enhancement by the roughness,
and the very feeble effect of the latter on the profile, means that
for roughness heights exceeding the critical, the boundary layer
stability is very sensitive to roughness. In turn, this means that
there will be some difficulty in attributing observed instabilities to
a particular profile distortion -- not an uncommon occurrence in tests
of this type.

About half of the final stability data with the hot-wire
anemometer, those pertaining to the rough wall, were also obtained
during this period. For each of the three fixed supply pressures, a
0.00002"-dia. hot-wire anemometer was held fixed in the boundary layer
at each of about 70 equally spaced positions, from the leading edge to

near the end of the flat plate model (3 x 70 = 210 points total).
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j? Ten-second "bursts" of hot-wire signals were recorded on analog tape
e?f at each position. In addition, a second group of data was recorded
Ny which wvas identical to that obtained in the layer, except that the
}Ei ‘ second group vas obtained in the free stream along a line parallel to
;% the surface, and located about 4 boundary layer thicknesses above the
' latter.

:§ The hot-wire data just mentioned constitute the main measurements
‘i of this research, and their analysis is expected to occupy the curremnt
3 (final) year of this grant. In the meantime, however, tentative
;t& examination of these data, examples of which are shown on Figure 6,
éé shoved ample evidence that hydrodynamic stability is at work in the
e rough~surface boundary layer. Stability theory predicts a region of
_%5 damped disturbances at low Reynolds numbers (small x), followed by a
ﬁ; high-frequency amplification regime which is in turn followed by low-
N frequencyamplification. A series of power spectra taken along
;% increasing x would thus show an initial uniform decrease of the
1$3 spectrum followed by spectra with a "hump" at mid-frequencies and
‘4 eventually by a spectrum monotonically decreasing with frequency.
‘:E This sequence of events indeed appears on Figure 6.
j? The following work is planned or 1983-1984:

a. Measurement of the stability of the smooth (tare)
.‘: ‘ surface with the hot-wire, in a manner analogous to
N that shown on Figure 6 for the rough wall.
'ﬁ
A:{ b. Reduction of the smooth-wall and rough-wall hot-
2% wire data to uncover differences in amplification
E\z factors, and in the dependence of the stability
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diagram on roughness.

c. Comparison with smooth-wall supersonic stability
data obtained elsewhere.

d. Similar reduction of the data obtained in the

free stream, to see to what extent the stream

turbulence affects either the smooth- or the

rough-wall stability.

e. Quantitative measurement of the stream turbulence.
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Figure 1. Transition to turbulence in these velocity profiles is
indicated by the departure of the data (points) from the laminar flow
flow theory (solid lines) at the inicated distance (in cm.) from the L.E.
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Figqure 2. Comparison of measured boundary-layer velocity profiles with
theory. Profile points beyond 10 cm dencnstrate transition to turbulence.
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Figure 3. Velocity profiles taken over the "valleys" between ridges and
those taken over the ridges themselves are identical, showing that the
flow "skims" over the ridges and that the cavities are "open".
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Figure 5. Comparison of the rough-wall and smooth-wall velocity profiles
shows a small difference indicating that the roughness generally
\ decelerates the boundary-layer flow.
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